
COOR Communication Conventions

scott snyder

July 22, 1997

This note discusses the general conventions which COOR uses when talk-

ing to the `trigger' subsystems. For purposes of this note, `trigger' also in-
cludes the interface to the token ring downloads and the data logger. The
intention is to try to make these conventions uniform across all these systems.

System-speci�c commands are discussed separately.

� D0IP is used for the underlying transport. One command or acknowl-
edgment is sent per D0IP message.

� Commands are always sent one way: from COOR to the trigger. If a
trigger needs to make asynchronous requests, it must explicitly open

an additional command channel to COOR.

� Every command should result in an acknowledgment from the trigger
back to COOR. In some cases, the order of acknowledgment may not

be the same as the order in which the commands were issued. In order
to keep straight the correspondence between commands and acknowl-

edgments, each command has a command id which is sent with the

command and returned with the acknowledgment. Triggers should not
assume anything about the format of this id, other than that it consists

of printable characters, contains no whitespace, and is no longer than
32 characters.

� Commands come in two types: immediate or batched.

{ For an immediate command, COOR will expect a reply from the
trigger before sending another command.

1



{ COORmay send multiple batched commands without an acknowl-

edgment. A batch is implicitly started by the �rst batched com-

mand received. It is ended by the special command `con�gure'.

When `con�gure' is received, the batched commands should de-

scribe a consistent con�guration. Once the `con�gure' command

is sent, no additional commands will be sent until every com-

mand in the batch (including the `con�gure' command) has been

acknowledged.

The trigger can start processing commands at any time. It can

process them as they are received, or it can queue them up and
process them all once the `con�gure' command has been received.
Acknowledgments can be sent before the `con�gure' command ar-
rives. Except for the `con�gure' command (which must be ac-
knowledged last) and for commands within a block, commands
may be acknowledged in any order.

� General command format.

{ Commands should be case-insensitive.

{ COMMAND-ID COMMAND [ARGS] . . .

� Acknowledgment format.

{ COMMAND-ID ack STATUS [TEXT]

{ COMMAND-ID is copied from the corresponding command.

{ STATUS is either `ok', `bad', or `more'.

{ TEXT is either status information being returned from the com-
mand (if STATUS is `ok') or an error message (if STATUS is
`bad'). If TEXT would take more than one line, each line should

be sent separately, in order. For all except the last line, STATUS

should be `more'. For the last line, STATUS should be the �nal

value.

If STATUS is `ok' and the command was not requesting any in-

formation, then TEXT may be blank. If STATUS is `bad', TEXT
should contain a brief error message.

� Some common command names which should be recognized by all sys-

tems. (They might not have to do anything for some of them, but they
should be able to recognize and acknowledge them.)

2



{ con�gure: As discussed above.

{ begin block

{ end block: These are not really commands, per se, and should not

be acknowledged. (For uniformity, they will still have a COMMAND-

ID, but it may be a dummy.) Commands which occur between

begin block and end block must be processed in the order in which

they were sent.

Only batched commands may appear within a block, and `con�g-

ure' may not appear within a block.

Not all order dependencies will be protected within a block. In
general, if it doesn't make sense to reorder the commands they
won't be put into a block. (This will probably only be used for

tkr downloads.)

{ init: This is an immediate command. The trigger should imme-

diately end all ongoing DAQ, release resources, and restore all
programming to the default state.

It should not be necessary to reboot nodes, reload FPGAs, etc.

in response to this command. The assumption being made is that
the targeted system is still sane, but is in an unknown state.

This is sent by COOR on startup, and whenever it reinitializes.

{ start run RUNNO SPECTRIGS

{ stop run RUNNO: Start or stop run number RUNNO. SPEC-
TRIGS is a list of level-1 (and level-2) speci�c triggers partici-

pating in the run. (This would probably be a space-separated list,

possibly with the notation FIRST:LAST to specify a range.) Some
systems won't have to actually do anything for these commands.

{ pause

{ resume: Pause and resume processing events. Systems not in the
readout chain won't have to do anything for these commands.

{ begin store STORENUM

{ end store STORENUM: Note that a store is beginning or ending.

3


